# A Convergence Theorem for Noncommutative Continued Fractions* 

Wyman Fair ${ }^{\dagger}$<br>Department of Mathematics, Drexel University Philadelphia, Pa. 19104

Communicated by Yudell L. Luke
Received June 5, 1970
DEDICATED TO PROFESSOR J. L. WALSH ON THE OCCASION OF HIS 75TH BIRTHDAY

We concern ourselves with the formal expression

$$
\begin{equation*}
\frac{A_{1}}{E+} \frac{A_{2}}{E+\cdots} \tag{1}
\end{equation*}
$$

in which the $A_{k}$ are members of a complex Banach algebra with identity $E$. Associated with (1) is the sequence

$$
\begin{equation*}
Q_{n}^{-1} P_{n} \tag{2}
\end{equation*}
$$

(assuming $Q_{n}$ to be invertible), where $P_{n}$ and $Q_{n}$ are given by

$$
\begin{gather*}
P_{n+1}=P_{n}+A_{n+1} P_{n-1} \\
Q_{n+1}=Q_{n}+A_{n+1} Q_{n-1} \\
P_{1}=P_{2}=A_{1}, \quad Q_{1}=E \quad \text { and } \quad Q_{2}=E+A_{2} \tag{3}
\end{gather*}
$$

The expression (1) converges if $Q_{n}$ is invertible for sufficiently large $n$ and (2) converges. In this case the value of (1) is defined to be the limit of the sequence (2).

We shall prove the following result which, in a sense, generalizes a theorem of Worpitzky [1] to our abstract setting.

Theorem. In (1), let $\sup a_{n}<a<\frac{1}{4}$, where $a_{n}=\left\|A_{n}\right\|$. Then (1) converges. Also, the constant $\frac{1}{4}$ is the best possible.

Before proving the theorem, we record two lemmas dealing with ordinary (real) continued fractions. The proofs of the lemmas are straightforward and so are omitted.

[^0]Lemma 1. If $0<a<\frac{1}{4}$, then the convergents of the continued fraction

$$
\begin{equation*}
\frac{a}{1-} \frac{a}{1-\cdots} \tag{4}
\end{equation*}
$$

are positive, monotonic increasing, converging to

$$
\begin{equation*}
\frac{1}{2}\left[1-(1-4 a)^{1 / 2}\right]<\frac{1}{2}(1-\delta) \tag{5}
\end{equation*}
$$

for some $0<\delta<1$.
Lemma 2. Let $b_{k} \geqslant 0$ and $\sup b_{k}<a<\frac{1}{4}$. Then the $n$-th convergent of

$$
\begin{equation*}
\frac{b_{1}}{1-\frac{b_{2}}{1-\cdots}} \tag{6}
\end{equation*}
$$

is nonnegative and less than the $n$-th convergent of (4),
We set

$$
\begin{equation*}
F_{n}=A_{n} Q_{n-2} Q_{n-1}^{-1}, \quad f_{n}=\left\|F_{n}\right\|, \quad \text { and } \quad q_{n}=\left\|Q_{n}^{-1}\right\|_{0} \tag{t}
\end{equation*}
$$

Proof of the Theorem. Obviously, $Q_{1}$ and $Q_{2}$ are invertible. Use of the lemmas gives

$$
f_{3} \leqslant a_{3}\left\|\left(E+A_{2}\right)^{-1}\right\| \leqslant \frac{a_{3}}{1-a_{2}}<\frac{1-\delta}{2}, \quad 0<\delta<1
$$

and

$$
Q_{3}=Q_{2}+A_{3} Q_{1}=\left(E+F_{3}\right) Q_{2}
$$

implying the invertibility of $Q_{3}$. Inductively, assume that $Q_{k}$ is invertible and that
for $k=3,4, \ldots, n$. Then by the properties of the norm and use of the lemmas,

$$
\begin{aligned}
f_{n+1} & \left.\leqslant a_{n+1} \| Q_{n-1} I\left(E+F_{n}\right) Q_{n-1}\right]^{-1} \| \\
& =a_{n+1}\left\|\left(E+F_{n}\right)^{-1}\right\| \leqslant \frac{a_{n+1}}{1-f_{n}} \leqslant \frac{a_{n+1}}{1-\frac{a_{n}}{1-\cdots} \frac{a_{3}}{1-a_{2}}<\frac{1-\delta}{2} .} .
\end{aligned}
$$

Thus, since $Q_{n+1}=\left(E+F_{n+1}\right) Q_{n}, Q_{n+1}$ is invertible. So for all $n, Q_{n}$ is invertible and

$$
\begin{equation*}
f_{n}<\frac{1-\delta}{2}<\frac{1}{2} \tag{8}
\end{equation*}
$$

Now $q_{1}<2, q_{2}<2$, and

$$
q_{n+1}=\left\|Q_{n}^{-1}\left(E+F_{n+1}\right)^{-1}\right\| \leqslant \frac{q_{n}}{1-f_{n+1}}<2 q_{n}
$$

and so by induction

$$
\begin{equation*}
q_{n}<2^{n-1} \tag{9}
\end{equation*}
$$

Use of the identity

$$
\begin{equation*}
Q_{n+1}^{-1} P_{n+1}-Q_{n}^{-1} P_{n}=(-1)^{n} Q_{n+1}^{-1} F_{n+1} F_{n} \cdots F_{3} A_{2} A_{1} \tag{10}
\end{equation*}
$$

yields

$$
\begin{align*}
\left\|Q_{n+1}^{-1} P_{n+1}-Q_{n}^{-1} P_{n}\right\| & \leqslant q_{n+1} f_{n+1} f_{n} \cdots f_{3} a_{2} a_{1} \\
& <2^{n-4}\left(\frac{1-\delta}{2}\right)^{n-1}<(1-\delta)^{n-1} \tag{11}
\end{align*}
$$

where $0<\delta<1$. Set $\rho=1-\delta$; then the triangle inequality along with (11) gives

$$
\begin{equation*}
\left\|Q_{n+k}^{-1} P_{n+k}-Q_{n}^{-1} P_{n}\right\|<\rho^{n+k-2}+\rho^{n+k-3}+\cdots+\rho^{n-1}<\frac{\rho^{n-1}}{1-\rho} \tag{12}
\end{equation*}
$$

Hence $Q_{n}^{-1} P_{n}$ is Cauchy and so converges, so that (1) converges. That $\frac{1}{4}$ is the best possible follows from the scalar case.

It would be desirable to extend the theorem to the case $\sup a_{n} \leqslant \frac{1}{4}$ so as to get the complete analog of Worpitzky's theorem, but it appears that it will require a proof of a different type than that above.

## Reference

1. J. Worpitzky, "Untersuchungen über die Entwickelung der Monodronen und Monogenen Functionen durch Kettenbrüche, "pp. 3-39, Friedrichs-Gymnasium und Realschule, Jahresbericht, Berlin, 1865.

[^0]:    * Sponsored by the Office of Aerospace Research under contract No. F 33615-69-C-1564.
    ${ }^{+}$Formerly at Midwest Research Institute.

